algebraic extension - Axtarish в Google
A field extension that is not algebraic, is said to be transcendental, and must contain transcendental elements, that is, elements that are not algebraic.
Алгебраическое расширение Алгебраическое расширение
Алгебраи́ческое расшире́ние — расширение поля {\displaystyle \mathbb {E} \supset \mathbb {K} }, где каждый элемент {\displaystyle \alpha \in \mathbb {E} } алгебраичен над {\displaystyle \mathbb {K} }, то есть существует аннулирующий многочлен... Википедия
An extension F of a field K is said to be algebraic if every element of F is algebraic over K (i.e., is the root of a nonzero polynomial with coefficients ...
9.8 Algebraic extensions. An important class of extensions are those where every element generates a finite extension. Definition 9.8.1.
In abstract algebra, an algebra extension is the ring-theoretic equivalent of a group extension. Precisely, a ring extension of a ring R by an abelian group ...
21 мар. 2015 г. · Definition 31.1. An extension field E of field F is an algebraic extension of F if every element in E is algebraic over F. Example. Q ...
... extension field E of F is called an algebraic extension of F if every element of E is algebraic over F. Otherwise we say it is a transcendental extension of F.
22 мар. 2013 г. · Let L/K L / K be an extension of fields. L/K L / K is said to be an algebraic extension of fields if every element of L L is algebraic over ...
Продолжительность: 11:01
Опубликовано: 22 янв. 2021 г.
Novbeti >

 -  - 
Axtarisha Qayit
Anarim.Az


Anarim.Az

Sayt Rehberliyi ile Elaqe

Saytdan Istifade Qaydalari

Anarim.Az 2004-2023