arithmetico-geometric series formula - Axtarish в Google
Возможно, вы имели в виду: arithmetic-geometric series formula
The nth element of an arithmetico-geometric sequence is the product of the nth element of an arithmetic sequence and the nth element of a geometric sequence. Elements · Series · Partial sums · Infinite series
Арифметико-геометрическая прогрессия Арифметико-геометрическая прогрессия
В математике арифметико-геометрическая последовательность — это результат поэлементного умножения элементов геометрической прогрессии на соответствующие элементы арифметической прогрессии. n-й элемент арифметико-геометрической последовательности —... Википедия (Английский язык)
An arithmetico-geometric series is the sum of consecutive terms in an arithmetico-geometric sequence defined as: $x_n=a_ng_n$
An arithmetico geometric series is obtained by term-by-term multiplication of a GP with the corresponding terms of an AP.
An arithmetic-geometric progression (AGP) is a progression in which each term can be represented as the product of the terms of an arithmetic progressions (AP) ...
The following formula is derived for the calculations of nth terms of an arithmetico geometric series, S = a. (rn – 1) / (r – 1), or,
Продолжительность: 12:31
Опубликовано: 11 мая 2023 г.
Sequence and Series Formula lists the formulas for the nth term and sum of the terms of the arithmetic, geometric, and harmonic series. Learn these formulas ...
A geometric series has the explicit formula an=a(r)n-1, where a is the initial value and r is the common ratio.
Novbeti >

 -  - 
Axtarisha Qayit
Anarim.Az


Anarim.Az

Sayt Rehberliyi ile Elaqe

Saytdan Istifade Qaydalari

Anarim.Az 2004-2023