axiom of regularity - Axtarish в Google
In mathematics, the axiom of regularity is an axiom of Zermelo–Fraenkel set theory that states that every non-empty set A contains an element that is ... Elementary implications of... · The axiom of dependent...
Аксиома регулярности Аксиома регулярности
Аксиомой регулярности называется следующее высказывание теории множеств: , где Словесная формулировка: В любом непустом семействе множеств есть множество, каждый элемент которого не принадлежит данному семейству. Википедия
The Axiom of Regularity states that the relation ∈ on any family of sets is well-founded: Axiom of Regularity. Every nonempty set has an ∈-minimal element: ∀S ( ...
20 нояб. 2022 г. · In material set theory, the axiom of foundation, also called the axiom of regularity, states that the membership relation ∈ on the proper ...
11 мар. 2020 г. · However, Axiom of Regularity has an unclear statement in a first glance: For each non-empty set , there is y ∈ x such that x ∩ y = ∅ .
One of the Zermelo-Fraenkel axioms, also known as the axiom of regularity (Rubin 1967, Suppes 1972). In the formal language of set theory, it states that x!
The axiom of regularity together with the axiom of pairing implies that no set is an element of itself, and that there is no infinite sequence (an) such that ai ...
25 мая 2024 г. · The axiom of regularity states that every set must contain at least one element that is disjointed from itself.
Novbeti >

 -  - 
Axtarisha Qayit
Anarim.Az


Anarim.Az

Sayt Rehberliyi ile Elaqe

Saytdan Istifade Qaydalari

Anarim.Az 2004-2023