control lyapunov function - Axtarish в Google
A control-Lyapunov function is used to test whether a system is asymptotically stabilizable, that is whether for any state x there exists a control u. Definition · Theorems · Example
Control-Lyapunov function Control-Lyapunov function
В теории управления функция управления-Ляпунова представляет собой расширение идеи функции Ляпунова на системы с управляющими входами. Обычная функция Ляпунова используется для проверки того, является ли динамическая система устойчивой или... Википедия (Английский язык)
Definition: A control Lyapunov function for ˙x = f(x)+g(x)u is a continuously differentiable function V : R n ! R 0 such that. LgV (x)=0 ) Lf V (x) < 0 for x ...
... control law u(t) = g(x(t)), with g(z) = argmin w∈U. ˙. V (z,w) results in J ≤ V (x(0)) in this case V is called a control-Lyapunov function for the problem.
Control Lyapunov function (CLF) is a successful attempt to directly use of the Lyapunov function stability analysis technique of nonlinear systems in the ...
However, in this thesis, Lyapunov function candidates are used in feedback design itself by making the Lyapunov derivative negative when choosing the control.
1 мар. 2023 г. · This survey provides a brief overview on the control Lyapunov function (CLF) and control barrier function (CBF) for general nonlinear-affine control systems.
Lyapunov functions are used to certify stability or to establish invariance of a region. But the same conditions can be used to certify that the state of a ...
How can we find a CLF? If we know of any stabilizing control with a corresponding. Lyapunov function V , then V is a CLF. Feedback Linearization.
Lyapunov functions are a central tool in the context of nonlinear control theory as they do not only serve as certificates of stability and simplify stability ...
Lyapunov theory deals with dynamical systems without inputs. For this reason, it has traditionally been applied only to closed-loop control systems, that is, ...
Некоторые результаты поиска могли быть удалены в соответствии с местным законодательством. Подробнее...
Novbeti >

 -  - 
Axtarisha Qayit
Anarim.Az


Anarim.Az

Sayt Rehberliyi ile Elaqe

Saytdan Istifade Qaydalari

Anarim.Az 2004-2023