enriched category - Axtarish в Google
In category theory, a branch of mathematics, an enriched category generalizes the idea of a category by replacing hom-sets with objects from a general monoidal ... Examples of enriched categories · Enriched functors
9 дек. 2023 г. · 1. Idea. The notion of enriched category is a generalization of the notion of category. Very often instead of merely having a set of morphisms ... Enrichment in a monoidal... · Passage between ordinary...
Обогащённая категория Обогащённая категория
Обогащённая категория в теории категорий — обобщение понятия категории, конструкция, в которой множество морфизмов между двумя объектами заменена на объект произвольной моноидальной категории. Википедия
1 июн. 2024 г. · Enriched categories may be used to model objects in higher category theory: if the objects of the enriching category V V behave themselves as (n ...
4 февр. 2022 г. · Enriched categories make it possible to see even more of the underlying structures in these various mathematical objects, which sometimes even ...
Reprints in Theory and Applications of Categories, No. 10, 2005. BASIC CONCEPTS OF. ENRICHED CATEGORY THEORY. G.M.
To enrich a category, simply start by creating a category template. It will gather and display the attributes that will help you describe and qualify your ...
8 июн. 2021 г. · What is enriched category theory? As the name suggests, it's like a "richer" version of category theory, and it all starts with a simple ...
13 мая 2017 г. · A category is locally small if morphisms between any two objects form a set. If they don't form a set, we have to rethink a few definitions.
14 мар. 2016 г. · 2-Categories - Enriched in categories. Examples: Stacks (BG, QCoh) are 2-sheaves, 2-category of rings and bi-modules.
10 июн. 2021 г. · A category C C enriched over V V (or simply a V V -category) consists of a set ob(C) ob ( C ) of objects and an element C(X,Y)∈V C ( X , Y ) ∈ V ...
Novbeti >

 -  - 
Axtarisha Qayit
Anarim.Az


Anarim.Az

Sayt Rehberliyi ile Elaqe

Saytdan Istifade Qaydalari

Anarim.Az 2004-2023