12 июн. 2016 г. · Evaluate the double integral ∬D4xydA, where D is the triangular region with vertices (0,0), (1,2), and (0,3). Your solution's ready to go! |
7 нояб. 2012 г. · Solution:- We have ∫ ∫ D [ 8 x y ] d A. where D is the triangular region with vertices ( 0 , 0 ) , ( 1 , 2 ) , and ( 0 , 3 ). |
3 нояб. 2012 г. · The integral ∫20∫1x/2ey2dydx. is hard to evaluate, so you need to get the dx inside. The following will do: ∫10∫2y0ey2dxdy. |
18 июл. 2023 г. · Final answer: The value of the double integral ∫∫D dy² dA over the triangular region D with vertices (0,1), (1,2), and (4,1) is 8/3. |
28 нояб. 2020 г. · One way to do it is to draw the rectangle 0≤x,y≤2. This is dissected into four triangles. It's easy to integrate over the rectangle and also over each of the ... |
y2dA where D is the triangular region with vertices (0, 1), (1, 2), (4, 1). Solution: We are going to integrate x first, then y. The left function is x = y − 1, ... |
Novbeti > |
Axtarisha Qayit Anarim.Az Anarim.Az Sayt Rehberliyi ile Elaqe Saytdan Istifade Qaydalari Anarim.Az 2004-2023 |