fermat's last theorem - Axtarish в Google
In number theory, Fermat's Last Theorem states that no three positive integers a, b, and c satisfy the equation an + bn = cn for any integer value of n ... Fermat's Last Theorem in fiction · Modularity theorem · Proof of Fermat's Last...
Великая теорема Ферма Великая теорема Ферма
Великая теорема Ферма́ — одна из самых популярных теорем математики. Сформулирована французским математиком Пьером Ферма в 1637 году. Несмотря на простоту формулировки, буквально, на «школьном» арифметическом уровне, доказательство теоремы искали... Википедия
28 сент. 2024 г. · Fermat's last theorem, statement that there are no natural numbers (1, 2, 3,…) x, y, and z such that x^n + y^n = z^n for n greater than 2.
Wiles's proof of Fermat's Last Theorem is a proof by British mathematician Sir Andrew Wiles of a special case of the modularity theorem for elliptic curves. Summary of Wiles's proof · Mathematical detail of Wiles's...
Fermat's last theorem is a theorem first proposed by Fermat in the form of a note scribbled in the margin of his copy of the ancient Greek text Arithmetica ...
Fermat's last theorem (also known as Fermat's conjecture, or Wiles' theorem) states that no three positive integers x , y , z x,y,z x,y,z satisfy x n + y n = z ...
Оценка 4,5 (1 392) · 15,51 $ · В наличии This is a full story of Prof. Andrew Wiles and his 8 years' long journey to solve the hardest problem, Fermat's Last Theorem. The story is intriguing. Sometimes ...
Продолжительность: 9:31
Опубликовано: 24 сент. 2013 г.
Despite large prizes being offered for a solution, Fermat's Last Theorem remained unsolved. It has the dubious distinction of being the theorem with the largest ...
21 сент. 2004 г. · For 350 years, Fermat's statement was known in mathematical circles as Fermat's Last Theorem, despite remaining stubbornly unproved.
Некоторые результаты поиска могли быть удалены в соответствии с местным законодательством. Подробнее...
Novbeti >

Ростовская обл. -  - 
Axtarisha Qayit
Anarim.Az


Anarim.Az

Sayt Rehberliyi ile Elaqe

Saytdan Istifade Qaydalari

Anarim.Az 2004-2023