gauss-kronrod quadrature - Axtarish в Google
The Gauss–Kronrod quadrature formula is an adaptive method for numerical integration. It is a variant of Gaussian quadrature, in which the evaluation points ... Description · Example
Gauss–Kronrod quadrature formula Gauss–Kronrod quadrature formula
Квадратурная формула Гаусса-Кронрода представляет собой адаптивный метод численного интегрирования. Википедия (Английский язык)
Abstract. The Jacobi matrix of the (2n+1)-point Gauss-Kronrod quadrature rule for a given measure is calculated efficiently by a five-term recurrence.
Overview. Gauss-Kronrod quadrature is an extension of Gaussian quadrature which provides an a posteriori error estimate for the integral.
24 окт. 2016 г. · Abstract. Kronrod in 1964, trying to estimate economically the error of the n-point Gauss quadrature formula.
Gauss–Kronrod rules are extensions of Gauss quadrature rules generated by adding n + 1 points to an n-point rule in such a way that the resulting rule is of ... Gauss–Legendre quadrature · Chebyshev–Gauss quadrature
22 окт. 2024 г. · The Jacobi matrix of the (2n+1)-point Gauss-Kronrod quadrature rule for a given measure is calculated eciently by a ve-term recurrence ...
Gauss-Kronrod quadrature formula is an extension of the Gaussian quadrature formula that allows for calculating integral value and estimate of its error. This ...
We show that beyond a certain n (the number of Gauss nodes), which depends on the weight function, the interlacing, inclusion and positivity properties hold.
The Gauss-Kronrod quadrature scheme, which is based on the zeros of Legendre polynomials and Stieltjes polynomials, is the standard method for automatic ...
7 дек. 2015 г. · It is well known that for Gaussian quadratures, the best known (and most commonly used) stopping functional comes from the seminal Kronrod idea ...
Некоторые результаты поиска могли быть удалены в соответствии с местным законодательством. Подробнее...
Novbeti >

 -  - 
Axtarisha Qayit
Anarim.Az


Anarim.Az

Sayt Rehberliyi ile Elaqe

Saytdan Istifade Qaydalari

Anarim.Az 2004-2023