In mathematics, the Gelfond–Schneider theorem establishes the transcendence of a large class of numbers. |
12 мар. 2024 г. · Historical Note. The Gelfond-Schneider Theorem was proved in 1934 – 1935 by Alexander Osipovich Gelfond and Theodor Schneider. |
In 1966, Baker established the following generalization of the Gelfond-Schneider Theorem (Theorem 19). Theorem 21. If α1,...,αm are non-zero algebraic numbers ... |
Gelfond's theorem, also called the Gelfond-Schneider theorem, states that a^b is transcendental if 1. a is algebraic !=0,1 and 2. b is algebraic and ... |
The Gelfond–Schneider Theorem states that if $a$ is an algebraic number (not equal to 0 or 1) and $b$ is a transcendent number, then the number $a^b$ is ... |
21 авг. 2011 г. · This theorem provided explicit quantitative bounds on exactly how transcendental quantities such as {\frac{\log 2}{\log 3}} were. |
The Gelfond–Schneider constant or Hilbert number [1] is two to the power of the square root of two: which was proved to be a transcendental number by Rodion ... |
18 июн. 2014 г. · The Gelfond-Schneider Theorem says that if a and b are algebraic numbers with a≠0,1, and b irrational, then ab is transcendental. Reference Request: Gelfond Schneider Theorem Why is Gelfond's constant transcendental? Gelfond-Schneider transcendental Kuzmin Gelfond-Schneider Constant $2^{\sqrt{2}} - Math Stack Exchange Другие результаты с сайта math.stackexchange.com |
(mathematics) A theorem that establishes the transcendence of a large class of numbers, stating that, if a and b are algebraic numbers with a ≠ 0, 1, and b ... |
Некоторые результаты поиска могли быть удалены в соответствии с местным законодательством. Подробнее... |
Novbeti > |
Axtarisha Qayit Anarim.Az Anarim.Az Sayt Rehberliyi ile Elaqe Saytdan Istifade Qaydalari Anarim.Az 2004-2023 |