gelfond-schneider theorem - Axtarish в Google
In mathematics, the Gelfond–Schneider theorem establishes the transcendence of a large class of numbers.
Теорема Гельфонда — Шнайдера Теорема Гельфонда — Шнайдера
Теорема Гельфонда—Шнайдера — теорема в теории чисел, которая устанавливает трансцендентность большого класса чисел и тем самым решает Седьмую проблему Гильберта. Была доказана независимо в 1934 году советским математиком Александром Гельфондом и... Википедия
12 мар. 2024 г. · Historical Note. The Gelfond-Schneider Theorem was proved in 1934 – 1935 by Alexander Osipovich Gelfond and Theodor Schneider.
In 1966, Baker established the following generalization of the Gelfond-Schneider Theorem (Theorem 19). Theorem 21. If α1,...,αm are non-zero algebraic numbers ...
Gelfond's theorem, also called the Gelfond-Schneider theorem, states that a^b is transcendental if 1. a is algebraic !=0,1 and 2. b is algebraic and ...
The Gelfond–Schneider Theorem states that if $a$ is an algebraic number (not equal to 0 or 1) and $b$ is a transcendent number, then the number $a^b$ is ...
21 авг. 2011 г. · This theorem provided explicit quantitative bounds on exactly how transcendental quantities such as {\frac{\log 2}{\log 3}} were.
The Gelfond–Schneider constant or Hilbert number [1] is two to the power of the square root of two: which was proved to be a transcendental number by Rodion ...
(mathematics) A theorem that establishes the transcendence of a large class of numbers, stating that, if a and b are algebraic numbers with a ≠ 0, 1, and b ...
Некоторые результаты поиска могли быть удалены в соответствии с местным законодательством. Подробнее...
Novbeti >

Ростовская обл. -  - 
Axtarisha Qayit
Anarim.Az


Anarim.Az

Sayt Rehberliyi ile Elaqe

Saytdan Istifade Qaydalari

Anarim.Az 2004-2023