hölder inequality - Axtarish в Google
In mathematical analysis, Hölder's inequality, named after Otto Hölder, is a fundamental inequality between integrals and an indispensable tool for the ...
Неравенство Гёльдера Неравенство Гёльдера
Нера́венство Гёльдера в функциональном анализе и смежных дисциплинах — это фундаментальное свойство пространств. Википедия
Hölder's inequality is a statement about sequences that generalizes the Cauchy-Schwarz inequality to multiple sequences and different exponents.
Hölder's inequality for integrals states that int_a^b|f(x)g(x)|dx<=[int_a^b|f(x)|^pdx]^(1/p)[int_a^b|g(
This is the elementary form of the Cauchy-Schwarz Inequality. We can state the inequality more concisely thus:
The Hölder inequality, the Minkowski inequality, and the arithmetic mean and geometric mean inequality have played dominant roles in the theory of inequalities.
29 нояб. 2012 г. · In the Hölder inequality the set S may be any set with an additive function μ (e.g. a measure) specified on some algebra of its subsets, while ...
24 апр. 2013 г. · We establish a new reverse Hölder integral inequality and its discrete version. As applications, we prove Radon's, Jensen's reverse and weighted ...
Продолжительность: 18:32
Опубликовано: 30 янв. 2012 г.
8 сент. 2015 г. · A special case of Hölder inequality is Schwarz's inequality: (∫Rdf(x)g(x)dx)2≤∫Rdf(x)2dx⋅∫Rdg(x)2dx.
Некоторые результаты поиска могли быть удалены в соответствии с местным законодательством. Подробнее...
Novbeti >

 -  - 
Axtarisha Qayit
Anarim.Az


Anarim.Az

Sayt Rehberliyi ile Elaqe

Saytdan Istifade Qaydalari

Anarim.Az 2004-2023