jacobson ring - Axtarish в Google
In algebra, a Hilbert ring or a Jacobson ring is a ring such that every prime ideal is an intersection of primitive ideals. For commutative rings primitive ... Jacobson rings and the... · Examples · Characterizations
Definition 10.35.1. Let R be a ring. We say that R is a Jacobson ring if every radical ideal I is the intersection of the maximal ideals containing it.
кольцо Джекобсона кольцо Джекобсона
В алгебре кольцо Гильберта или кольцо Джекобсона — это кольцо, в котором каждый простой идеал является пересечением примитивных идеалов. Википедия (Английский язык)
The purpose of this note is to develop the elementary theory of Jacobson rings without recourse to Noether's normalization lemma (in contrast to the ...
23 июл. 2024 г. · A Jacobson ring is a commutative (unital) ring whose every prime ideal is an intersection of the maximal ideals which contain it.
R[X] is the polynomial ring over R in an indeterminate X. A ring R is said to be a Jacobson ring if every prime ideal of R is an intersection of primitive.
a ring R is jacobson if the jacobson radical equals the nil radical in any homomorphic image of R. This includes the identity map, hence jac(R) = nil(R).
A prime ideal P ⊂ R is an Goldman ideal if. R/P is a Goldman domain. (1.4) Definition A commutative ring R is said to be a Jacobson ring if every Goldman prime.
Novbeti >

 -  - 
Axtarisha Qayit
Anarim.Az


Anarim.Az

Sayt Rehberliyi ile Elaqe

Saytdan Istifade Qaydalari

Anarim.Az 2004-2023