landau inequality - Axtarish в Google
In mathematics, the Landau–Kolmogorov inequality, named after Edmund Landau and Andrey Kolmogorov, is the following family of interpolation inequalities ...
Landau's inequality ∥y′∥2≦4∥y∥∥y″∥ is extended to ∥y′∥2≦K(a)∥y∥1−a ∥y″ ∣y∣a∥, K(a) = 4/(l−a), 0≦ a<1. The proof is elementary and new even in the case a = 0 ...
In the present paper we obtain two inequalities which generalize. Landau's Inequality, π(2x) ⩽ 2π(x) for any integer x ⩾ 2. Also, we obtain the inequality.
Landau–Kolmogorov inequality Landau–Kolmogorov inequality
В математике неравенство Ландау–Колмогорова, названное в честь Эдмунда Ландау и Андрея Колмогорова, представляет собой следующее семейство интерполяционных неравенств между различными производными функции f, определенной на подмножестве T... Википедия (Английский язык)
We survey known results on the best constants in Landau's Inequality relating norms of a function y and its first two derivatives y′, y″ and between a ...
In this note, we study Landau–Kolmogorov problem in Lp norm on a given finite interval ½a; b for r ¼ 2 and 3. Our result is related to a previous publication [3] ...
Let ||f|| be the supremum of |f(x)|, a real-valued function f defined on (0,infty). If f is twice differentiable and both f and f^('') are bounded, Landau ...
A sharp Landau-Kolmogorov inequality on a finite interval is proved. The proof yields the known Landau-Kolmogorov inequality on A as a limiting case, and thus.
29 окт. 2012 г. · The Landau-Kolmogorov problem consists of finding the upper bound M_k for the norm of intermediate derivative |f^{(k)}|, when the bounds |f| \le M_0 and |f^{(n ...
ABSTRACT. The best constants for Landau's inequality with the classical p- norms are known explicitly only when p = 1, 2 and oo. This is true for both the.
Некоторые результаты поиска могли быть удалены в соответствии с местным законодательством. Подробнее...
Novbeti >

 -  - 
Axtarisha Qayit
Anarim.Az


Anarim.Az

Sayt Rehberliyi ile Elaqe

Saytdan Istifade Qaydalari

Anarim.Az 2004-2023