lyapunov method - Axtarish в Google
This article is about asymptotic stability of nonlinear systems. For stability of linear systems, see exponential stability.
Устойчивость Динамические системы Устойчивость
Устойчивость — свойство решения дифференциального уравнения притягивать к себе другие решения при условии достаточной близости их начальных данных. В зависимости от характера притяжения выделяются различные виды устойчивости. Википедия
Lyapunov functions, named after Aleksandr Lyapunov, are scalar functions that may be used to prove the stability of an equilibrium of an ODE. Definition · Basic Lyapunov theorems for... · Example
Lyapunov optimization method is developed to find a stability or equilibrium in a dynamic system with a stochastic property of non-linear system (NLP problem)
4.3 The indirect method of Lyapunov. The indirect method of Lyapunov uses the linearization of a system to determine the local stability of the original system.
Lyapunov functions are used to certify stability or to establish invariance of a region. But the same conditions can be used to certify that the state of a ...
3 сент. 2021 г. · The idea behind Lyapunov's "direct" method is to establish properties of the equilibrium point (or, more generally, of the nonlinear system) by ...
(called global exponential stability, and is stronger than G.A.S.) then, there is a Lyapunov function that proves the system is exponentially stable, i.e., ...
A Lyapunov function is a scalar function established on phase space that can be used to show an equilibrium point's stability.
Actually, stability of both linear and non- linear systems can be determined using Lyapunov method. Lyapunov stability criterion was developed by A. M. Lyapunov ...
In this recitation we review concepts of stability and Lyapunov's direct and indirect methods for analysing the stability of a system around an equilibrium ...
Некоторые результаты поиска могли быть удалены в соответствии с местным законодательством. Подробнее...
Novbeti >

 -  - 
Axtarisha Qayit
Anarim.Az


Anarim.Az

Sayt Rehberliyi ile Elaqe

Saytdan Istifade Qaydalari

Anarim.Az 2004-2023