negative binomial series - Axtarish в Google
The series which arises in the binomial theorem for negative integer -n ,. (x+a)^(-n), = sum_(k=0)^(infty)(-n; k). (1). = sum_(k=0)^(infty)(-1)^k.
The binomial theorem for positive integer exponents n can be generalized to negative integer exponents. This gives rise to several familiar Maclaurin series ...
In probability theory and statistics, the negative binomial distribution is a discrete probability distribution that models the number of failures in a ...
Negative Binomial Series. The Series which arises in the Binomial Theorem for Negative integral $n$ ,. $\displaystyle (x+a)^{-n}$, $\textstyle = ...
... negative binomial series defined by the MacLaurin series for ... The negative binomial series includes the case of the geometric series, the power series ... Summation of the binomial... · Negative binomial series
In 1676 Newton showed that the binomial theorem also holds for negative integers n, which is the so-called negative binomial series and converges for |x| < y.
In this explainer, we will learn how to use the binomial expansion to expand binomials with negative and fractional exponents.
Продолжительность: 9:40
Опубликовано: 3 окт. 2021 г.
Novbeti >

Ростовская обл. -  - 
Axtarisha Qayit
Anarim.Az


Anarim.Az

Sayt Rehberliyi ile Elaqe

Saytdan Istifade Qaydalari

Anarim.Az 2004-2023