p-adic hodge theory - Axtarish в Google
In mathematics, p-adic Hodge theory is a theory that provides a way to classify and study p-adic Galois representations of characteristic 0 local fields ... Period rings and comparison... · Notes · References
12 апр. 2024 г. · p-adic Hodge theory is the study of properties of p-adic (étale, de Rham, logarithmic crystalline) cohomology (and motives) of non-archimedean ... Hodge-Tate decomposition · Classification of p p -adic...
p-adic Hodge theory p-adic Hodge theory
В математике p-адическая теория Ходжа — это теория, которая позволяет классифицировать и изучать p-адические представления Галуа локальных полей характеристики 0 с остаточной характеристикой p. Википедия (Английский язык)
A first glimpse of p-adic Hodge theory. Our goal in this section is to give a rough idea of what p-adic Hodge theory is about. By nature, p-adic Hodge ...
24 июн. 2009 г. · Part I. First steps in p-adic Hodge theory. 4. 1. Motivation. 4. 1.1. Tate modules. 4. 1.2. Galois lattices and Galois deformations.
p-adic Hodge theory is a p-adic counterpart of classical Hodge theory: it studies the natural structures found on the cohomology of algebraic varieties over ...
Let X be a compact complex manifold. We discuss three properties of classical Hodge the- ory. Hodge decomposition. Hodge's theorem says that if X is Kähler, ...
p-adic Hodge theory is one of the most powerful tools in modern arithmetic geometry. In this survey, we will review p-adic Hodge theory of algebraic varieties, ...
Roughly speaking, p-adic Hodge theory (over F) is the study of de Rham and p-adic étale cohomologies of (proper smooth) schemes over F. The.
16 мая 2020 г. · Abstract:p-adic Hodge Theory is one of the most powerful tools in modern Arithmetic Geometry. In this survey, we will review p-adic Hodge ...
(a) We intend to describe a relationship between p-adic etale cohomology and. Hodge cohomology for smooth algebraic varieties over a p-adic field K. The.
Novbeti >

 -  - 
Axtarisha Qayit
Anarim.Az


Anarim.Az

Sayt Rehberliyi ile Elaqe

Saytdan Istifade Qaydalari

Anarim.Az 2004-2023