quasi category - Axtarish в Google
30 мая 2023 г. · A quasi-category is a simplicial set in which composition of any two composable edges is defined up to a contractible space of choices.
In mathematics, more specifically category theory, a quasi-category is a generalization of the notion of a category. The study of such generalizations is ... Definition · The homotopy category · Examples · Variants
4 авг. 2020 г. · A quasi-category is a simplicial set satisfying a condition that asks for certain “compositions of morphisms” to exist.
Quasi-categories are the fibrant objects of a Quillen model structure on the category of simplicial sets. Many results of homotopical algebra become more ...
Quasi-category Quasi-category
В математике, а точнее в теории категорий, квазикатегория — это обобщение понятия категории. Изучение таких обобщений известно как теория высших категорий. Квазикатегории были введены Boardman & Vogt. Википедия (Английский язык)
22 июн. 2008 г. · Our goal is to show that category theory has a natural extension to quasi-categories, The extended theory has applications to homotopy theory, ...
31 мая 2023 г. · There is an operadic analog of the relation between quasi-categories and simplicial categories, involving, correspondingly, dendroidal sets and ...
A quasi-category X is a simplicial set satisfying the restricted Kan conditions of Boardman and Vogt. It has an associated homotopy category ho X . We show ...
In this paper we re-develop the foundations of the category theory of quasi-categories (also called ∞-categories) using. 2-category theory.
26 мая 2014 г. · There is a simple direct procedure to extract a quasicategory from a model category, see Remark 2.8 in Meier's “Model categories are fibrant ...
18 янв. 2022 г. · The paradigm is "use simplicial categories for examples; use quasicategories for general theorems". There are a lot of constructions which are simpler in ...
Novbeti >

 -  - 
Axtarisha Qayit
Anarim.Az


Anarim.Az

Sayt Rehberliyi ile Elaqe

Saytdan Istifade Qaydalari

Anarim.Az 2004-2023