ramanujan continued fraction - Axtarish в Google
Rogers–Ramanujan continued fraction Rogers–Ramanujan continued fraction
Непрерывная дробь Роджерса-Рамануджана - это непрерывная дробь, открытая Роджерсом и независимо Шринивасой Рамануджаном и тесно связанная с тождествами Роджерса-Рамануджана. Его можно явно оценить для широкого класса значений его аргумента. Википедия (Английский язык)
The Rogers–Ramanujan continued fraction is a continued fraction discovered by Rogers (1894) and independently by Srinivasa Ramanujan, and closely related to ... Definition · Special values · Derivation of special values
The Rogers-Ramanujan continued fraction is a generalized continued fraction defined by R(q)=(q^(1/5))/(1+q/(1+(q^2)/(1+(q^3)/(1+...))))
Ramanujan developed a number of interesting closed-form expressions for generalized continued fractions. These include the almost integers.
The Rogers–Ramanujan continued fraction possesses a rich and beautiful theory containing fascinating and surprising results.
There are essentially three Ramanujan continued fractions of order eighteen, and we study them using the theory of modular functions.
If Ramanujan's continued fraction (or its reciprocal) is expanded as a power series, the sign of the coefficients is (eventually) periodic with period 5.
In this article we give solution of the general quintic equation by means of the Rogers-Ramanujan continued fraction. More precisely we express a root of the ...
which is the continued fraction of Ramanujan. Note that. 223. 9. Ramanujan seems to have had a great fascination for his continued fraction (1). It turns up ...
Некоторые результаты поиска могли быть удалены в соответствии с местным законодательством. Подробнее...
Novbeti >

 -  - 
Axtarisha Qayit
Anarim.Az


Anarim.Az

Sayt Rehberliyi ile Elaqe

Saytdan Istifade Qaydalari

Anarim.Az 2004-2023