rogers-ramanujan identities - Axtarish в Google
In mathematics, the Rogers–Ramanujan identities are two identities related to basic hypergeometric series and integer partitions. The identities were first ... Application to partitions · Dedekind eta function identities
Rogers–Ramanujan identities Rogers–Ramanujan identities
В математике тождества Роджерса-Рамануджана — это два тождества, связанные с основными гипергеометрическими рядами и целочисленными разбиениями. Тождества были впервые обнаружены и доказаны Леонардом Джеймсом Роджерсом, а затем были повторно... Википедия (Английский язык)
130 identities of Rogers-Ramanujan type, some of which were already known, but many which were new and due to Slater. A few of these are summarized in the ...
The Rogers–Ramanujan identities imply two theorems for partitions of n subject to some simple restrictions. One of these may be stated as follows: The number of ...
The following identity can be proved by manipulating generating functions and is a powerful tool for proving many results about generating functions in q and z.
The sum sides of the Rogers–Ramanujan identities arose from the analysis of the Rogers–Ramanujan continued fraction. Next, we show how one can guess the product.
A proof of the Rogers-Ramanujan identities is presented which is brief, elementary, and well motivated; the “easy” proof of whose existence Hardy and Wright ...
The Rogers–Ramanujan continued fraction is a continued fraction discovered by Rogers (1894) and independently by Srinivasa Ramanujan
63,99 $ The Rogers--Ramanujan identities are a pair of infinite series—infinite product identities that were first discovered in 1894. Over the past several decades ...
30 янв. 2014 г. · We find a framework which extends the Rogers-Ramanujan identities to doubly-infinite families of q-series identities. If a\in\{1,2\} and m,n\geq ...
Некоторые результаты поиска могли быть удалены в соответствии с местным законодательством. Подробнее...
Novbeti >

Ростовская обл. -  - 
Axtarisha Qayit
Anarim.Az


Anarim.Az

Sayt Rehberliyi ile Elaqe

Saytdan Istifade Qaydalari

Anarim.Az 2004-2023