separable extension - Axtarish в Google
Every algebraic extension of a field of characteristic zero is separable, and every algebraic extension of a finite field is separable. Separable and inseparable... · Separable elements and...
Сепарабельное расширение Сепарабельное расширение
Сепара́бельное расширение — алгебраическое расширение поля, состоящее из сепарабельных элементов, то есть таких элементов, минимальный аннулятор над для которых не имеет кратных корней. Производная должна быть в этой связи ненулевым многочленом. Википедия
A separable extension K of a field F is one in which every element's algebraic number minimal polynomial does not have multiple roots.
An irreducible polynomial P over F is separable if and only if P has pairwise distinct roots in an algebraic closure of F.
Продолжительность: 13:54
Опубликовано: 1 янв. 2021 г.
In mathematics, more specifically in the area of modern algebra known as field theory, an algebraic extension is a separable extension if and only if for ...
In this section we talk about separability for nonalgebraic field extensions. This is closely related to the concept of geometrically reduced algebras.
A finite extension L/K is called separable if every element of L is separable over K. When L/K is not separable, it is called inseparable. Example 3.2 ...
(algebra) A finite (and thereby algebraic) extension of a base field such that every element of the extension is the root of a separable polynomial over the ...
31 авг. 2024 г. · A field F is called perfect if all irreducible polynomials over F are separable, and as a consequence every algebraic extension of F is ...
Novbeti >

 -  - 
Axtarisha Qayit
Anarim.Az


Anarim.Az

Sayt Rehberliyi ile Elaqe

Saytdan Istifade Qaydalari

Anarim.Az 2004-2023