stable homotopy groups - Axtarish в Google
In mathematics, stable homotopy theory is the part of homotopy theory (and thus algebraic topology) concerned with all structure and phenomena
3 окт. 2022 г. · By definition a stable homotopy type is one on which suspension and hence looping and delooping act as an equivalence. Historically people ...
The stable homotopy groups form a generalized homology theory. This fact makes stable computations much simpler than those in the unstable cases. Stabilization of homotopy groups · Exotic spheres
20 янв. 2021 г. · Stable homotopy groups are homotopy groups as seen in stable homotopy theory. A morphism inducing an isomorphism on all stable homotopy groups is called a ...
стабильная теория гомотопий стабильная теория гомотопий
В математике стабильная гомотопическая теория — это часть гомотопической теории, связанная со всеми структурами и явлениями, которые остаются после достаточно многих применений функтора надстройки. Википедия (Английский язык)
The founding result of stable homotopy theory is the Freudenthal suspension theorem which states that homotopy groups eventually become isomorphic after ...
The stable homotopy groups form the coefficient ring of an extraordinary cohomology theory, called stable cohomotopy theory. The unstable homotopy groups (for n ... General theory · Applications · Table of homotopy groups
The stable homotopy groups enjoy additional structure that make them more amenable to computation than the unstable groups. The rest of this article is ...
13 янв. 2020 г. · We compute the classical and motivic stable homotopy groups of spheres from dimension 0 to 90, except for some carefully enumerated uncertainties.
23 янв. 2018 г. · We provide a working guide to the stable homotopy category, to the Steenrod algebra and to computations using the Adams spectral sequence. Many ...
4 мая 2023 г. · We compute the classical and motivic stable homotopy groups of spheres from dimension 0 to 90, except for some carefully enumerated uncertainties.
Novbeti >

 -  - 
Axtarisha Qayit
Anarim.Az


Anarim.Az

Sayt Rehberliyi ile Elaqe

Saytdan Istifade Qaydalari

Anarim.Az 2004-2023