sum of geometric series - Axtarish в Google
In mathematics, a geometric series is a series summing the terms of an infinite geometric sequence, in which the ratio of consecutive terms is constant.
The two geometric sum formulas are: The geometric sum formula for finite terms: If r = 1, Sn = an and if r≠1,Sn=a(1−rn)/1−r.
Геометрическая прогрессия Геометрическая прогрессия
В математике геометрическая прогрессия — это ряд, суммирующий члены бесконечной геометрической прогрессии, в которой отношение последовательных членов постоянно. Например, ряд представляет собой геометрический ряд с общим отношением ⁠⁠, который... Википедия (Английский язык)
The sum formula of an infinite geometric series a + ar + ar2 + ar3 + ... can be calculated using the formula, Sum of infinite geometric series = a / (1 - r), ...
To find the sum of an infinite geometric series having ratios with an absolute value less than one, use the formula, S = a 1 1 − r , where ...
To find the sum of an infinite geometric series having ratios with an absolute value less than one, use the formula, S = a 1 1 − r , where a 1 is the first term ...
A geometric series sum_(k)a_k is a series for which the ratio of each two consecutive terms a_(k+1)/a_k is a constant function of the summation index k.
Novbeti >

 -  - 
Axtarisha Qayit
Anarim.Az


Anarim.Az

Sayt Rehberliyi ile Elaqe

Saytdan Istifade Qaydalari

Anarim.Az 2004-2023