vojta conjecture - Axtarish в Google
In mathematics, Vojta's conjecture is a conjecture introduced by Paul Vojta (1987) about heights of points on algebraic varieties over number fields.
Vojta's conjecture Vojta's conjecture
В математике гипотеза Войты - это гипотеза, введенная Полом Войтой о высотах точек на алгебраических многообразиях над числовыми полями. Гипотеза была мотивирована аналогией между диофантовым приближением и теорией Неванлинны в комплексном... Википедия (Английский язык)
2 апр. 2021 г. · Vojta introduced a dictionary between value distribution theory? of Nevanlinna and Diophantine approximation theory? of Roth and suggested that ...
This final chapter is dedicated to the Vojta conjectures. They may be considered as an arithmetic counterpart of the Nevanlinna theory discussed in Chapter 13 ...
Vojta's conjecture is a quantitative attempt at how the geometry controls the arithmetic, and it is very deep: its special cases include Schmidt's subspace.
16 мая 2022 г. · We prove a Diophantine approximation inequality for rational points in varieties of any dimension, in the direction of Vojta's conjecture with truncated ...
Lang-Vojta conjecture is one of the most celebrated conjec- tures in Diophantine Geometry. Stated independently by Paul. Vojta in [Voj1] and Serge Lang (see ...
Introduction. Vojta's famous conjecture in Diophantine geometry was originally stated for a smooth projective variety X over a number field and a simple ...
Vojta's Conjecture. A conjecture which treats the heights of points relative to a canonical class of a curve defined over the integers.
8 дек. 2020 г. · We propose a conjecture on a sufficient condition for the limit to be zero. We point out that our conjecture implies Dynamical Mordell-Lang conjecture.
28 мая 2024 г. · In our setting, Vojta's height conjecture predicts that given a general type variety 𝑋 defined over a characteristic zero function field 𝜅(C) of ...
Novbeti >

 -  - 
Axtarisha Qayit
Anarim.Az


Anarim.Az

Sayt Rehberliyi ile Elaqe

Saytdan Istifade Qaydalari

Anarim.Az 2004-2023