whitney theorem - Axtarish в Google
The strong Whitney embedding theorem states that any smooth real m-dimensional manifold (required also to be Hausdorff and second-countable) can be smoothly ...
In mathematics, in particular in mathematical analysis, the Whitney extension theorem is a partial converse to Taylor's theorem.
Теорема Уитни о вложении Теорема Уитни о вложении
Теорема Уитни о вложении — утверждение дифференциальной топологии, согласно которому произвольное гладкое -мерное многообразие со счётной базой допускает гладкое вложение в -мерное евклидово пространство. Установлено Хасслером Уитни в 1938 году. Википедия
A fundamental theorem in differential geometry is proven in this essay. It is the embedding theorem due to Hassler Whitney, which shows that the ever so general.
Theorem 1.2 (The Whitney embedding theorem: median version). Any compact manifold M of dimension m can be embedded into R2m+1 and immersed into R2m. Proof.
Theorem 0.2 (The Strong Whitney Embedding Theorem). Any smooth man- ifold M of dimension m ≥ 2 can be embedded into R2m (and can be immersed into R2m−1).
15 дек. 2020 г. · The (strong) Whitney embedding theorem states that every smooth manifold (Hausdorff and sigma-compact) of dimension n n has an embedding of ...
Abstract. The Whitney embedding theorem states that any smooth compact manifold of dimension n can be embedded as a closed submanifold of R2n. In this article, ...
Продолжительность: 15:47
Опубликовано: 3 сент. 2022 г.
Некоторые результаты поиска могли быть удалены в соответствии с местным законодательством. Подробнее...
Novbeti >

 -  - 
Axtarisha Qayit
Anarim.Az


Anarim.Az

Sayt Rehberliyi ile Elaqe

Saytdan Istifade Qaydalari

Anarim.Az 2004-2023